²³¹Pa and ²³³Pa neutron-induced fission data analysis

Vladimir M. Maslov¹, Mamoru Baba², Akira Hasegawa³, Nikolai V. Kornilov⁴, Alexander B. Kagalenko⁴, Natalia A. Tetereva¹

Neutron-induced fission data for ²³³Pa nuclide are of much interest for the thorium fuel cycle development. Measured data base is comprized only from two data sets [1, 2, 3], which do not seem to be fully compatible. Application of Hauser-Feshbach statistical model for the analysis of neutron-induced fission data [1, 2] and ²³³ Pa(n,f) fission data [3], extracted from the transfer reaction ²³²Th(³He,p)²³⁴Pa would be of much interest. Above emissive fission threshold fission probabilities of ²³³Pa and ²³²Pa nuclides, fissioning in ²³³Pa(n,nf) and ²³³Pa(n,2nf) reactions, respectively, could be estimated using data of transfer reactions ²³²Th(³He,d)²³³Pa and ²³¹Pa(d,p)²³²Pa [4]. First chance fission cross section is estimated based on consistent description of ²³⁸U(n,f), ²³⁸U(n,xn) and ²³²Th(n,f), ²³²Th(n,2n) data. This approach could be validated in case of ²³¹Pa(n,f) neutron-induced fission data analysis. Data on fission of residual nuclides, emerging in transfer reactions ²³¹Pa(d,p)²³²Pa, ²³⁰Th(³He,d)²³¹Pa and ²³⁰Th(³He,t)²³⁰Pa are used for the ²³¹Pa(n,f) data analysis up to 20 MeV. Data by Kobayashi et al. [5] below fission threshold of ²³¹Pa(n,f) reaction are used to fix fission barrier parameters.

This analysis of Pa fission data is the major constraint for other neutron cross sections and secondary spectra evaluation for the ²³¹Pa and ²³³Pa data files. ²³¹Pa and ²³³Pa data files are compiled. Average unresolved resonance parameters, fast neutron cross sections, angular distributions and secondary neutron spectra differ very much from the previous evaluations.

International Science and Technology Center under Project Agreement B-404 supported research.

References

- [1] Tovesson F. et al., Phys. Rev. Lett., 88 (6), 062502-1 (2002).
- [2] Hambsch F.-J. et al., Proc. X International Seminar on Interaction of Neutrons with Nuclei, Dubna, Russia, May 17-20, 2002, p. 202
- [3] Petit M. et al., Actinide and Fission Product Partitioning and Transmutation, Madrid, Spain, Dec., 11-13, 2000, p. 751.
- [4] Britt H.C., Wilhelmy J.B., Nucl. Sci. Eng., 72, 222 (1979).
- [5] Kobayashi K. et al, Nucl. Sci.Eng., 139, 273 (2001).

¹ Joint Institute for Nuclear and Energy Research - Sosny, 220109, Minsk-Sosny, Belarus

² Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan

³ Japan Atomic Energy Research Institute, Tokai-mura, Naka-qun, Ibaraki-ken

⁴ Institute of Physics and Power Engineering, Obninsk, Russia